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ABSTRACT	

 
roblem	Statement:	350‐420	new	cases	of	gastric	and	duodenal	ulcer	per	
year	 per	 100,000	 people	 have	 been	 recorded	 in	 Hungary	 in	 the	 years	
2004‐10.	 The	 aim	 is	 to	 give	 a	 detailed	 characterization	 of	 the	 joint	

distribution	 of	 these	 two	 types	 of	 peptic	 ulcer	 in	 space	 and	 time.	 The	 empirical	
distribution	seems	to	be	far	from	the	uniform	and	it	shows	similar	spatial	patterns	
to	 that	 of	 some	 socio‐economical	 factors.	 Common	 procedures	 of	 mapping	
standardized	 incidence	 ratios	 (SIR)	 appeared	 to	 be	 inapplicable	 due	 to	 low	 case	
numbers	in	some	cells	when	analyzing	detailed	data	of	yearly	incidence	classified	by	
age,	gender	and	place	of	patient’s	residence.		
Approach:	 Our	 approach	 is	 twofold:	 we	 estimate	 parameters	 of	 a	 multilevel	
Poisson‐Binomial	 regression	 model,	 and	 we	 use	 interactive	 mapping	 tools	 for	
generating	hypotheses	and	for	representing	the	estimated	parameters.			
Results:	The	family	of	Bayesian	multilevel	regression	models	proved	to	be	suitable	
to	test	hypotheses	formulating	interaction	effects	between	time	and	spatial	factors.	
An	OpenBUGS	source	code	of	the	final	model	is	also	given.	We	found	that	the	socio‐
economically	 deprived	 micro‐regions	 of	 North‐East	 Hungary	 are	 less	 favoured	 in	
terms	of	public	health;	they	have	high	SIR	values	of	both	gastric	(K25)	and	duodenal	
ulcer	(K26),	moreover	the	ratio	K26/K25	is	also	extremely	high.	Spatial	differences	
in	reaction	to	changes	in	2007‐8	are	also	characterized.		
Conclusions:	 The	 composed	 use	 of	 disease	 mapping	 and	 statistical	 modeling	 is	
demonstrated	 as	 an	 efficient	 tool	 of	 data	mining	 for	 exploring	 unexpected	 space‐
time	effects	of	epidemiological	processes.	
	
Keywords:	disease	mapping,	peptic	ulcer,	socio‐economical	factors	in	public	health,	
Poisson	regression.	
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Introduction 
 
Peptic ulcers have two common forms: gastric ulcer (ICD-10 code: K25) and duodenal ulcer (ICD-10 code: 

K26). The occurrence of the diseases show high geographic and temporal variations: in Western populations 
duodenal ulcer is more common while in Asia, especially in Japan, gastric ulcers dominate [1]. ICD 
(International Classification of Diseases) is the most widely used international disease classification system, 
maintained by the World Health Organisation. Hungary is using ICD-10, the current, tenth version of ICD both 
for mortality and morbidity statistics. 

 
In both diseases, ulcer is consequence of the imbalance between protective and aggressive factors of the 

mucous membrane, mainly caused by inflammation. Earlier, peptic ulcers were considered psychosomatic 
diseases mainly caused by stress [2]. In 1983, two researchers identified a bacterium, Helicobacter pylori (H. 
pylori) in patients with chronic gastritis [3]. Since then, a relationship has been discovered between H. pylori 
and several gastrointestinal diseases including peptic ulcers and some forms of tumors [4]. However, the cause-
effect link is not clear: over 80 percent of infected people never develop an ulcer, and at least in10 per cent of 
ulcer cases the presence of H. Pylori cannot be proven [5]. Consequently, peptic ulcers supposed to be of 
multifactorial origin influenced by bacterial infection, psychological factors, as well as behavioural factors and 
some drugs [6, 7]. 

 
Duodenal ulcer is more related to H. pylori infection, and is caused mainly by an increase in acid and pepsin 

load, and gastric metaplasia in the duodenal cap. Gastric ulcer, especially in Western countries is rather 
associated with NSAID ingestion, but H. pylori might be present in these patients as well. Gastritis is 
predominating in gastric ulcers [8]. H. pylori and NSAID use are independent risk factors of peptic ulcers and 
they have synergistic effects. These two factors together are responsible for approximately 90% of peptic ulcer 
cases. However some studies report the growing proportion of ulcers not caused by these two factors, especially 
in the US [9]. This might be a consequence of the decreasing prevalence of H. pylori infection, but might also 
be caused by undetected NSAID use and/or inaccurate diagnosis of the infection, thus the results are uncertain. 
In areas with high prevalence of H. pylori such as Asia, this type of ulcers is rare [10]. 

 
Several studies inspected the prevalence of H. Pylori infection and the associated diseases. The results show 

a high variety among countries [11]. The studies inspected by the review were conducted in various age ranges, 
but in general the prevalence of the bacterium is high in less developed countries. In these countries, the 
infection rate can be higher than 70 per cent, and the infection appears already in early childhood. In developed 
countries, the infection is rare among children, but the prevalence increases with age. The overall incidence of 
H. pylori infection as well as the diagnosis and procedures associated with end-stage peptic ulcers show a 
decreasing trend in the US [12]. 

 
The impact of socio-economic inequalities on health can be modeled in many ways [13]. The first step is to 

define “welfare” as a comprehensive index for measuring socio-economic factors. Several indices of welfare are 
proposed by regional scientist [14, 15], but there is no generally accepted one, because the given nature of such 
an indicator could be considered to only a limited number of components. Despite the different paradigmatic 
approaches, it can be clearly stated that the components of the social welfare are mainly stable in correlations to 
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each other, as well as the fact that these elements are fairly constant in time. The central and Western regions of 
Hungary are historically more improved and prosperous contrast to the Eastern and North-Eastern regions. 

 
Disease mapping techniques are widely used in public health research for exploring regional differences. 

Standardization is an elementary tool for removing effects which result from the different age-by-gender 
distribution of the population in different spatial units [16]. Mapping spatial units by its standardized incidence 
ratio (SIR) value and modeling SIR values in Bayesian framework became a popular tool of spatial 
epidemiology. This technique descends from the classical paper [17] and is applied by a huge amount of case 
studies including our previous work [18].  

 
Gastric and duodenal ulcer are non-contagious diseases, therefore it is straightforward to model the 

incidence numbers as conditionally independent realizations of a two-dimensional Poisson random variables. 
The idea to model the joint distribution of several diseases by Bayesian decomposition of the joint likelihood is 
popularized by [19]. The full scale of marginal and conditional decompositions of the joint likelihood is given 
by [20]. The dynamic Poisson-Binomial model proposed here is a special case of the previously mentioned ones 
and is relatively simple because we deal with joint distribution of only two diseases. An application of this 
model in disease mapping and statistical testing will be discussed below. 
 
Data and Methods 

  
Medical data 

 
Hospital admissions (more precisely, departmental cases) in 2004-10 classified by admission diagnosis 

(using ICD-10 codes) were analyzed. The Hungarian national data repository (hosted by GYEMSZI) stores 
records of all hospital cases. Variables are taken into account: admission date and diagnosis, age, gender and 
ZIP code of patient’s place of residence. Patient identifier is replaced by a pseudo code that does not identify the 
real person but enables to match the records belonging to the same patient. According to current legislation in 
Hungary, such data are not considered as personal as far as the user of the data is not in possession of any tools 
that enables re-identify the subject of the data. 

 
Records coming from healthcare providers may consist a certain amount of missing or invalid fields. We 

confine ourselves to those records that have valid ICD codes, so the effects of diagnostic uncertainty are 
neglected. The cases with invalid age, gender and ZIP code of patient’s residence (and the non-residents of 
Hungary) are also excluded. The total losses due to the incorrect coding are about 15-40 percents. The risks 
given below may have underestimated to this extent, but this effect is uniform, so does not distort the main 
points of this paper. No sign of spatial or temporal accumulation of coding errors have been detected by our 
data screening system. 

 
Owing to the fact that only the first occurrence of a patient identifier has been taken into account by basic 

method of calculating incidence counts, we cannot calculate valid yearly incidence data for 2004. About 10 % 
of cases are common in two consecutive years. 
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The standardized incidence ratio (SIR) is the ratio of observed incidence number and the expected one. The 
latter is calculated using age-by-gender distribution of the current spatial unit and the Hungarian countrywide 
age- and gender-specific incidence rates as shown in Table 1. This method is referred to as indirect 
standardization [16]. 

 
Demographical and socio-economical data 

 
The welfare indicator is a composite index and originally based on the technique of paper of Quadrado et al. 

[14], but in the absence of some administrative data, the applied version of the index is slightly different from it. 
In this manner the indicator with the use of several different variables on micro-regional level conveys 
information about infrastructural, educational, labor market, unemployment, social assistance, income and 
taxation data for each year of the study period. 

 
An interactive tool for mapping and modeling: Rapporter 

 
Rapporter [21] is a scalable and extensible web application helping users to create, edit and publish 

comprehensive, reliable statistical reports on PC or any mobile device, using an intuitive user interface. The 
software is based on the power of the R programming language besides other open-source technologies, and is 
intended to be used in any modern web-browser, with the maths and heavy computations carried out on the 
server side. The main service of the application is freely available for non-profit academic purposes at 
rapporter.net. 

 
As Rapporter also provides an extensible application-programming interface (API), which seamlessly 

integrates statistical methods into any web page, a specific web application was created for the scientific 
community to run further analysis on the dataset used in this paper. This Rapporter application calls 
OpenBUGS to perform the Bayesian model fitting. Readers are encouraged to test this application from this 
link: http://web.tatk.elte.hu/~eregr/kabos/Lset_Welfare.html  

 
The multilevel Poisson-Binomial model 

Bayesian multilevel model applied here takes the observed case numbers as conditionally independent 
realizations of a Poisson distribution. The dependencies of Poisson parameters on age, gender and spatial units 
are specified in BUGS language [22]. A source code in OpenBUGS is given in Appendix 3.  

 
The idea behind our Poisson-Binomial model is that if Y1 and Y2 are two independent Poisson then Y1 + Y2 

is also a Poisson and the conditional distribution of Y2 |  Y1 + Y2 is Binomial. This fact is widely used in the 
log-linear analysis of cross-tables for parametrization of a two dimensional distribution by its marginals and 
odds ratio [23]. The general theory given in [20] has much more parametrization possibilities, but the simple 
special case we are using here has a straightforward epidemiological interpretation: Y1 + Y2 means the risk of 
being hospitalized by peptic ulcer (either by K25 or K26) while Y2 | Y1 + Y2 means the risk of having K26 
provided having either K25 or K26.  Our basic model is specified formally in Appendix 1, and a dynamic 
version is given in Appendix 2.  
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Results 

Regional inequalities of K25 and K26 incidence rates  
 
The North-Eastern part of Hungary consists of 25-30 micro-regions with extremely low socio-economical 

indicators forming a contiguous zone.  As a first approximation, this zone can be identified by counties 
Szabolcs-Szatmár-Bereg and Borsod-Abaúj-Zemplén and will be referred to as NE part of Hungary. Total 
population of NE part is about 1.2 million people (12% of Hungary). 
 

K25 in Hungary male female K26 in Hungary male female 

18-34 12.33 7.29 18-34 14.91 6.57

35-64 113.81 67.37 35-64 123.63 71.79

65-xxx 335.48 245.11 65-xxx 298.87 186.68

 
Table 1. Age- and gender-specific incidence rates of gastric (K25) and duodenal ulcer (K26)  in Hungary, yearly averages in 2005-10. 
 

K25 in NE part male female K25 out of NE male female 

18-34 13.69 9.11 18-34 12.12 7.02

35-64 134.33 84.25 35-64 110.87 64.99

65-xxx 365.36 260.87 65-xxx 331.72 242.99
 
Table 2.a. Age- and gender-specific incidence rates of gastric ulcer (K25) in North-East part of Hungary compared with the other 
parts, yearly averages in 2005-10. 
 

K26 in NE part male female K26 out of NE male female 

18-34 26.04 11.86 18-34 13.18 5.77

35-64 201.38 141.92 35-64 112.49 61.93

65-xxx 405.08 268.14 65-xxx 285.50 175.70
 
Table 2.b. Age- and gender-specific incidence rates of duodenal ulcer (K26) in North-East part of Hungary 
compared with the other parts, yearly averages in 2005-10. 

 
An obvious observation from these tables is that for each age-by-gender category risks are higher in the 

North-Eastern part than outside. Differences between the two types of peptic ulcer can be achieved by taking a 
closer look. We need some mapping and statistical modeling tools to get more detailed results.  
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Mapping socio-economical factors and SIR values 

 

 
Figure 1.  A welfare index of micro-regions of Hungary, 2005-10, composed by G. Tóth 
 

The central and western regions of the country are historically more developed and prosperous in contrast to the 
eastern and northeastern regions. However these differences had been existed for decades, some slow changes 
could be observed inside the regions [24]. 

 

 

 

 
 
 
Figure 2. Gastric ulcer (K25) and duodenal ulcer (K26) SIR values by micro-regions, Hungary, in 2005-7 and 
2008-10. 
 

Both types of peptic ulcer are related to the socio-economical factors, but K26 has closer links with welfare 
than K25.  All the comparisons have the same meaning: the lower the welfare, the higher the SIR level. 
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Fitting the multilevel Poisson-Binomial model and mapping the estimated parameters 
 

A Poisson distribution with parameter µij (indices refer to the year j and spatial unit i) is used to model the 
number of new cases diagnosed with peptic ulcer. The following equation specifies the “mu-part” of the model 
log(μ

ij
) = log(E

i
) + a.mu

j
 + b.mu⋅X.MU

i
 + ε.mu

ij
 where Ei is the expected incidence number in spatial unit i as 

calculated by the indirect standardization, a.muj is a correction term for year j, and X.MUi is the welfare index 
characterized in the previous subsection with regression coefficient b.mu. 

 

The “p-part” of the model is logit(p
ij

) = a.p
j
 + b.p⋅X.P

i
 + d.p

i
⋅X.D

j
 + ε.p

ij
 where the conditional probability of 

having duodenal ulcer provided having any type of peptic ulcer is denoted by pij. This part has two explanatory 
variables: X.Pi is the indicator variable of welfare at level -1 (equals 1 for micro-regions with welfare index less 
than -1, and equals 0 elsewhere) with regression coefficient b.p while X.Dj is the indicator of the change point in 
time with regression coefficient d.pi. Some more modeling issues will be discussed in the next section. 

 

The multilevel Poisson-Binomial model outlined below stated as Model 7 in the Table 3. Other models are 
made by omitting some terms as it is identified in the columns of model formulation. For example, Model 1 
consists of log(Ei)+a.muj in its mu-part, while the p-part consists of all the explanatory variables, but the error 
term. 
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 model formulation criteria for model selection 

model 
no. mu-part p-part Dbar Dhat pD DIC 

Model 1. E+a.mu a.p+X.P+D.P 26684.1 26565.9 118.2 26800

Model 2. E+a.mu +X.MU a.p+X.P+D.P 25858.6 25738.6 120 25980

Model 3. E+a.mu a.p+X.P+D.P+err.p 24619.4 23902.7 716.7 25340

Model 4. E+a.mu +X.MU a.p+X.P+D.P+err.p 23795.8 23077.9 718 24510

Model 5. 
E+a.mu 
+X.MU+err.mu a.p+D.P 17611.7 16477.9 1134 18750

Model 6. 
E+a.mu 
+X.MU+err.mu a.p+X.P+D.P 17324.7 16191.6 1133 18460

Model 7. 
E+a.mu 
+X.MU+err.mu a.p+X.P+D.P+err.p 15257.5 13532.3 1725 16980

 

Table 3. The posterior mean of the deviance (Dbar), the point estimate of deviance (Dhat), the complexity of 
model (pD) and the Deviance Information Criterion (DIC) of several models as estimated by OpenBUGS 

 
Table 3 shows that the lack-of-fit of data to the model (Dhat) decreases as the complexity of model (pD) 

increases. Deviance Information Criterion (DIC) is based on trade-off between these criteria, so it can be 
used to pick the optimal model [25]. Model 7 was chosen as optimal according to this criterion. The 
OpenBUGS results for other parameters of this model are given in the following table.  
 

mean sd 2.5% 25% 50% 75% 97.5% Rhat 
a.mu[1] 0.1725 0.0248 0.1242 0.1556 0.1733 0.1894 0.2192 1.0055
a.mu[2] 0.0039 0.0244 -0.0425 -0.0130 0.0041 0.0211 0.0504 1.0236
a.mu[3] -0.0992 0.0249 -0.1484 -0.1159 -0.0986 -0.0820 -0.0532 1.0046
a.mu[4] -0.0963 0.0249 -0.1452 -0.1131 -0.0966 -0.0794 -0.0450 1.0149
a.mu[5] -0.1921 0.0245 -0.2412 -0.2081 -0.1917 -0.1752 -0.1450 1.0034
a.mu[6] -0.2876 0.0258 -0.3371 -0.3049 -0.2882 -0.2699 -0.2379 1.0016
b.mu -0.1291 0.0103 -0.1501 -0.1360 -0.1287 -0.1218 -0.1097 1.0204
a.p[1] 0.0299 0.0300 -0.0295 0.0099 0.0298 0.0494 0.0886 1.0030
a.p[2] 0.0022 0.0302 -0.0576 -0.0186 0.0030 0.0227 0.0596 1.0053
a.p[3] -0.1226 0.0323 -0.1865 -0.1437 -0.1225 -0.1015 -0.0585 1.0016
a.p[4] -0.1474 0.0313 -0.2084 -0.1692 -0.1470 -0.1266 -0.0857 1.0010
a.p[5] -0.1977 0.0316 -0.2586 -0.2183 -0.1977 -0.1760 -0.1330 1.0009
a.p[6] -0.1824 0.0333 -0.2476 -0.2053 -0.1822 -0.1599 -0.1190 1.0083
b.p 0.2474 0.0311 0.1876 0.2257 0.2479 0.2690 0.3065 1.0025
deviance 15257.3 70.0 15120.0 15210.0 15260.0 15310.0 15420.0 1.0020

 
Table 4. Posterior estimates for parameters of Model 7. 

 
Both b.mu and b.p are significant (i.e. zero is out of their 95% level confidence interval), this is the most important 
information given by Table 4. This result can be interpreted as a statistical evidence for relationship between the welfare 
and SIR values. 

 One can notice some differences between spatial configuration of hot-spots of K26 in 2005-7 and in 2008-10 when 
analysing maps on Figure 2. This effect is described by the term d.p

i
⋅X.D

j
 in the p-part of model. The estimates cannot be 

given as a table because this model has as many d.p parameters as the number of spatial units. 
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Figure 3. K26 SIR / K25 SIR ratio in 2005-10 (left) and t-values of parameter estimation -d.p as given by 
OpenBUGS 

 
Note that the ratio visualized on the left hand side is not equal to the ratio of incidences of K26 and K25 

because of the different age-by-gender specific rates of these two diseases. The t-value represented by the right 
hand side map is simply defined as the ratio of MEAN and SD values as seen on the Table 3. The distribution is 
approximately standard normal because of the high degrees-of-freedom so the values above 1.65 are significant 
(at level 0.05 of significance using one sided confidence limits). 

 
Hungary joined the EU in 2004 which made it possible to involve high capital and EU funds in the country, 

thus launched regional changes for a few years, but the global economic crisis in 2008 has highly influenced the 
Hungarian economic performance. The fallback of the underperforming regions was accelerated and therefore 
the regional differences became more obvious, thus we investigated the differences between the before and after 
crisis periods, albeit there are generally slow changes in territorial level in Hungary. The results displayed above 
show mixed trends: the micro-regions of North-Eastern part changed in different ways in 2008. One can notice 
that micro-regions decreasing in K26/K25 (the dark blue ones in the right side of Figure 3) have a specific 
spatial pattern. This corresponds to the hypothesis that regional developments may strongly be influenced by the 
effects of the new section of motorway M3 opened in 2007, as similar results have been reported by K. Gkritza 
[26]. This correspondence cannot be confirmed here (due to the model over-dispersion discussed below) but it 
may be an initial point of further investigations based on more detailed regional data.  

 
Discussion 

 

Decision making support for public health policy 

 

Current trends in "evidence based health policy" require sound statistical analyses of morbidity data. 
Distribution of incidence data both in time and space are crucial for health care capacity planning and optimal 
use of scarce resources. Most of published studies however concentrate on single diseases and limited number 
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of predicting factors. Experts in health policy and quality of health care delivery are continuously seeking for 
relevant indicators. Presentation of their data in geographical information systems is very common but often 
fails to provide proving of statistical significance of the demonstrated special differences and inequities. 

 “All maps of parameter estimates are misleading” 

There are some common mistakes in interpreting disease maps as a paper of Gelman and Price put it sharply 
[27].The main objection against maps representing raw rates comes from the different subsample sizes. The 
different spatial units with the same color category may lead to different levels of statistical significance. This is 
because such maps cannot be used in statistical reasoning. We must admit that this remark applies to the SIR 
values on the maps of Figure 2 and to the ratios of SIR values on the left map of Figure 3. 

 There are also problems with maps based on statistical significance, due to their tendency to overemphasize the 
role of sample size. Next figure helps us to compare these methods by displaying the same content in two 
different ways.  

 
Figure 4. Maps of duodenal ulcer (K26) incidences among men aged 18-34 in 2005-10; displayed by SIR 
values (on the left) and by rejection probabilities of the null hypothesis that the observed numbers of incidences 
are independent realizations of a homogeneous Poisson process (on the right). 
Let us take a look at the two micro-regions circled by red. They were in the same category on the left map while 
one of them (the bigger one) became dark red on the right map and the smaller one became light blue. One can 
easily see (from the detailed population data not included here) that this is the case of overemphasizing we have 
mentioned below. The micro-region circled by black is a counterexample, while the left map may be 
misleading. Mapping method of displaying posterior z-scores (like the map on the right side of Figure 3) 
commits the same errors and there are some additional problems by neglecting the rules of simultaneous 
decision making [27]. Readers are welcome to visit Rapporter application 
http://web.tatk.elte.hu/~eregr/kabos/Compare_Maps.html for testing the possibilities to compare many other 
maps.  
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Professor Gelman and others have published a number of papers explaining many faces of this general problem 
in displaying spatial distributions [28-30]. Nevertheless, there are no alternatives to the use of maps of 
parameter estimates in public health research. According to the considerations summarized above these maps 
are used as explanatory tools for formulating hypotheses to be tested by standard statistical methods.  

The Poisson-Binomial model in more detail 

Poisson parameter of the sum of K25 and K26 incidences is denoted by µ and is specified by the “mu-part” of 
models. One of the differences between two models formulated in Appendix 1 and 2 is the different use of 
standardization. The first model has no explicit reference to the age and gender, but in the standardization, 
which is performed by years according to the age-by-gender distribution. The second model specifies the mu-
part as  log(μ

ijkℓ
) = log(E

ikℓ
) + a.mu

j
 + b.mu

kℓ
⋅X.MU

i
 + ε.mu

ijkℓ
 for i -th spatial unit, j -th year, k -th age-

group of the patient and ℓ -th gender of the patient. The first term on the right hand side is an offset (that is a 
variable with fixed regression coefficient 1) and it does not depend on year (j) but the second term (the intercept 
of regression) may vary from year to year. The indicator of spatial differences  X.MU has cofficient b.mu which 
may depend on age and gender while ε.mu is an independent and identically distributed (i.i.d.) error term.  

Given the sum of K25 + K26 the conditional distribution of K26 is binomial with parameter p which is 
specified by the “p-part” of models.  Let us take a closer look at the p-part of the dynamic model:  
logit(p

ijkℓ
) = a.p

j
 + b.p

kℓ
⋅X.P

i
 + d.p

ik
⋅X.D

j
 + ε.p

ijkℓ
 where coefficients a.p and b.p are similar (but not the 

same) to that of the mu-part.  

Explanatory variable X.Dj  is designed to detect a possible change point in 2008 regarding the dynamics of 
incidences of K26. Analyzing maps on Figure 2 we noticed that spatial patterns of K26 incidence and K26/K25 
SIR ratio has been changed in 2008. This type of hypotheses can be tested by our model because coefficients 
d.p may vary from micro-region to micro-region so an indicator area of this effect can be identified by the level 
of significance of these coefficients. Of course this is not a statistically correct method of hypothesis testing as 
explained below (a multiple test is needed) but this method helps us to narrow the area to be investigated 
involving other variables. Another possible aim for a further analysis is to test the dependency of d.p on age-
group. Some age-specific maps (not included here) suggest that the age-group 35-64 is more exposed to the 
change in 2008 than others.  

Although Model 7 was chosen as the best of models according to its DIC value in Table 3, we must not interpret 
it as a final model. Individual diagnostics of parameters of this model are acceptable (e.g. Rhat values in Table 4 
are less than 1.1) but there is an overall lack of fit. Dhat should follow an approximate chi-squared distribution 
with n-pD degrees of freedom if we assume the model, but n = no. of diseases * no. of age groups * no. of 
gender groups * no. of years * no. of spatial units = 2*3*2*6*174 = 12528 and n-pD = 12528 - 1725.0 = 10803 
is less than Dhat = 13532.3 showing that the model is over-dispersed [25] .  One can hardly get rid of over-
dispersion by involving other explanatory variables into the model because it increases the model complexity 
(pD), but using more flexible error structures may lead to models fit better [31-33].  
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Conclusion 

Maps representing raw incidence rates or SIR values are essential in public health research, but one must be 
careful in their interpretation. The models treated here may be useful to describe changes in space and time. The 
proper use of maps may be an efficient tool of visual data mining while representing estimated model 
parameters and suggest hypotheses for further research. 

Appendix 1. Formal specification of Poisson-Binomial model  
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log(μ
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) = log(E
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where  ε.mu
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where  ε.p
ij

   ∼ Normal ( 0 , σ
p

 )     (i.i.d.)   for    i=1..I  ,  j=1..J 

cell indices:    i-th region,  j-th year, 

Z
ij

 are observed incidences of gastric and duodenal ulcer (K25 + K26), 

Y
ij

 are observed incidences of duodenal ulcer (K26), 

E
ij

 are age-gender standardized expected incidences of (K25 + K26),  

a.mu, b.mu, σ
mu

 are first level unknown parameters, 

a.p, b.p, σ
p

 are second level unknown parameters, 

X.MU and X.P are explanatory variables characterizing spatial differences in welfare. 
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Appendix 2. Formal specification of dynamic Poisson-Binomial model 
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where  ε.p
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   ∼ Normal ( 0 , σ
p

 )   (i.i.d.)  for i=1..I , j=1..J , k=1..K , ℓ=1..L 

cell indices:   i-th region,  j-th year,  k-th age group,  ℓ-th gender, 

Z
ijkℓ

 are observed incidences of gastric and duodenal ulcer (K25 + K26), 

Y
ijkℓ

 are observed incidences of duodenal ulcer (K26), 

E
ikℓ

 are age-gender specific expected incidences of (K25 + K26) for region i 

a.mu, b.mu, σ
mu

 are first level unknown parameters, 

a.p, b.p, d.p, σ
p

 are second level unknown parameters, 

X.MU and X.P are explanatory variables characterizing spatial differences in welfare, 

X.D  is an explanatory variable characterizing change point in time.  
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Appendix 3. OpenBUGS source code of dynamic Poisson-Binomial model  
 
 
model (){ 
#### Likelihood MU part 
  for (l in 1:Ngender) { 
  for (k in 1:Nage) { 
  for (j in 1:Nyears) { 
  for (i in 1:Nareas) { 
    Z[l,k,j,i] ~ dpois(mu[l,k,j,i]) 
    ZZ[l,k,j,i] <- max(Z[l,k,j,i] , .1) 
    log(mu[l,k,j,i]) <- log(E[l,k,j,i]) +  

a.mu[j] + b.mu*  (X.MU[i] - X.MU.MEAN) + err.mu[l,k,j,i] 
  } 
  } 
  } 
  } 
  
#### MU part error term   
  for (l in 1:Ngender) { 
  for (k in 1:Nage) { 
  for (j in 1:Nyears) { 
  for (i in 1:Nareas) { 
    err.mu[l,k,j,i]  ~ dnorm(0, tau.err.mu)   
  } 
  } 
  } 
  } 
 
 
#### Likelihood P part 
  for (l in 1:Ngender) { 
  for (k in 1:Nage) { 
  for (j in 1:Nyears) { 
  for (i in 1:Nareas) { 
   Y[l,k,j,i] ~ dbin( p[l,k,j,i] , ZZ[l,k,j,i]) 
   logit(p[l,k,j,i]) <- a.p + b.p * (X.P[i] - X.P.MEAN) +  

d[k,i]*(X.D[j] - X.D.MEAN) + err.p[l,k,j,i]   
  } 
  } 
  } 
  } 
 
#### P part error term   
  for (l in 1:Ngender) { 
  for (k in 1:Nage) { 
  for (j in 1:Nyears) { 
  for (i in 1:Nareas) { 
   err.p[l,k,j,i] ~ dnorm(0,tau.err.p) 
  } 
  } 
  } 
  } 
#### dynamics  
  for (k in 1:Nage) { 
  for (i in 1:Nareas) { 
    d[k,i] ~ dnorm(0,tau.d)   
  } 
  } 
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#### inits and stoch constraints 
  for (j in 1:Nyears) { 
   a.mu[j] ~ dflat() 
  } 
  X.D.MEAN <- mean(X.D[]) 
  X.P.MEAN <- mean(X.P[]) 
  X.MU.MEAN <- mean(X.MU[]) 
  b.mu ~ dflat() 
  b.p ~ dflat() 
  a.p ~ dflat() 
  tau.err.mu ~ dgamma(.005,.005) 
  tau.err.p ~ dgamma(.005,.005) 
  tau.d ~ dgamma(.005,.005) 
 
}   
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